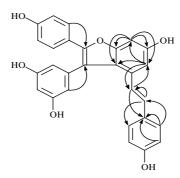
Synthesis of Amurensin H, a New Resveratrol Dimer from the Roots of *Vitis Amurensis*

Kai Sheng HUANG, Mao LIN*, Ying Hong WANG

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: Amurensin H(1) is a new resveratrol dimer isolated from the roots of *Vitis amurensis* Rupr. Its structure was determined by spectroscopic methods. It was synthesized from resveratrol with an oxidative coupling reaction as a key step.


Keywords: Synthesis, amurensin H, Vitis amurensis, resveratrol, oxidative coupling reaction.

Besides oligostilbenes we reported before¹, a new minor resveratrol dimer having a benzofuran moiety, amurensin H(1), was isolated from the roots of *Vitis amurensis* Rupr. We have synthesized amurensin H in order to afford more samples for bioactivity test. In this paper, we report the structural determination and synthesis of amurensin H from resveratrol.

Amurensin H(1) was obtained as pale yellow amorphous powder, exhibiting strong blue fluorescence under UV-254 light. Its molecular formula of $C_{28}H_{20}O_6$ was given by HREI-MS m/z 452.1246 [M]⁺ ($C_{28}H_{20}O_6$ requires 452.1260). Along with its ¹H and ¹³C-NMR (**Table 1**), **1** seems to be a resveratrol dimer. The ¹H-NMR spectrum exhibited signals for two 4-hydroxybenzene groups at δ 7.43 (2H, d, J=8.7Hz) and 6.74

(2H, d, J=8.7Hz), δ 7.01 (2H, d, J=8.7Hz) and 6.69 (2H, d, J=8.7Hz); one 3,5-dihydroxy-benzene group at δ 6.43 (2H, d, J=2.1Hz) and 6.53 (1H, t, J=2.1Hz); two meta-coupled protons at δ 7.07 (1H, d, J=2.1Hz) and 6.85 (1H, d, J=2.1Hz); two *trans* olefinic protons at δ 6.98 (1H, d, J=16.8Hz) and 6.89 (1H, d, J=16.8Hz). Comparing the 1 H and 13 C-NMR data of 1 with those of ϵ -viniferin², it was found that they had similar patterns except that ϵ -viniferin showed more signals for two aliphatic protons of a dihydrobenzofuran moiety than 1 in 1 H-NMR spectrum and 1 had two more quaternary carbons at δ 149.9 and 117.0 than ϵ -viniferin in 13 C-NMR spectrum. Therefore we concluded that 1 should be a didehydro- ϵ -viniferin and has the structure as shown in the illustration, which was further confirmed by HMBC spectrum (**Figure 1**).

Figure 1. C-H long-range correlations in HMBC spectrum of 1

Table 1. ¹H and ¹³C NMR spectral data for **1** [§]

No.	¹ H	¹³ C	No.	¹ H	¹³ C
1a		123.3	2(6)b	7.01 d (8.7)	128.6
2(6)a	7.43 d (8.7)	128.2	3(5)b	6.69 d (8.7)	116.1
3(5)a	6.74 d (8.7)	116.0	4b		157.9
4a		158.1	7b	6.89 d (16.8)	129.0
7a		149.9	8b	6.98 d (16.8)	122.7
8a		117.0	9b		132.8
9a		138.0	10b		122.0
10(14)a	6.43 d (2.1)	109.7	11b		155.8
11(13)a		160.3	12b	6.85 d (2.1)	97.2
12a	6.53 t (2.1)	102.9	13b		156.4
1b		130.0	14b	7.07 d (2.1)	107.3

[§] All assignments were confirmed by ¹H-¹H COSY, ¹H-¹³C COSY, NOESY and HMBC spectra measured in CD₃COCD₃ at 300 and 75 MHz for ¹H and ¹³C-NMR respectively.

In order to get more samples for bioactivity test, 1 was synthesized from resveratrol (**scheme 1**). Resveratrol was dimerized with FeCl₃ in methanol to give ϵ -viniferin 3 at room temperature; 3 was acetylated with acetic anhydride and pyridine to give 4 which was oxidized with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)³ to afford 5, and 5 was treated with K_2CO_3 in methanol to give 1 which was unambiguously identical with

natural amurensin H in all respects.

Scheme 1.

a. FeCl $_3$, MeOH b. (Ac) $_2$ O, pyridine c. DDQ, 1,4-dioxane, refluxed d. K_2 CO $_3$, MeOH

The dimerisation of resveratrol was the key step to form a murensin H, the mechanism of the oxidative coupling reaction was shown in **Scheme 2**.

Scheme 2.

Longcake and Pryce⁴ studied the dimerisation of resveratrol by oxidative coupling reaction, but they failed to obtain $\,^{\epsilon}$ -viniferin. Fortunately, we obtained $\,^{\epsilon}$ -viniferin successfully by treating resveratrol with FeCl₃⁵, which might be the similar reaction to the biosynthetic route of oligostilbenes.

References

- 1. K.S. Huang, M. Lin, J. Asian Nat. Prod. Res., 1999, in press.
- 2. P. Langcake, R. J. Pryce, Experientia, 1977, 15(1), 151.
- 3. S. Maeda, H. Masuda, T. Tokoyama, Chem. Pharm. Bull., 1994, 42, 2500.
- 4. P. Langcake and R. J. Pryce, J. Chem. Soc. Comm., 1977, 208.
- 5. L.X Zhou, Thesis for Master Degree, 1996, 53.

Received 26 May 1999